Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2
نویسندگان
چکیده
Chemoreception in the mouse olfactory system occurs primarily at two chemosensory epithelia in the nasal cavity: the main olfactory epithelium (MOE) and the vomeronasal epithelium. The canonical chemosensory neurons in the MOE, the olfactory sensory neurons (OSNs), express the odorant receptor (OR) gene repertoire, and depend on Adcy3 and Cnga2 for chemosensory signal transduction. The canonical chemosensory neurons in the vomeronasal epithelium, the vomeronasal sensory neurons (VSNs), express two unrelated vomeronasal receptor (VR) gene repertoires, and involve Trpc2 for chemosensory signal transduction. Recently we reported the discovery of two types of neurons in the mouse MOE that express Trcp2 in addition to Cnga2. These cell types can be distinguished at the single-cell level by expression of Adcy3: positive, type A and negative, type B. Some type A cells express OR genes. Thus far there is no specific gene or marker for type B cells, hampering further analyses such as physiological recordings. Here, we show that among MOE cells, type B cells are unique in their expression of the soluble guanylate cyclase Gucy1b2. We came across Gucy1b2 in an explorative approach based on Long Serial Analysis of Gene Expression (LongSAGE) that we applied to single red-fluorescent cells isolated from whole olfactory mucosa and vomeronasal organ of mice of a novel Trcp2-IRES-taumCherry gene-targeted strain. The generation of a novel Gucy1b2-IRES-tauGFP gene-targeted strain enabled us to visualize coalescence of axons of type B cells into glomeruli in the main olfactory bulb. Our molecular and anatomical analyses define Gucy1b2 as a marker for type B cells within the MOE. The Gucy1b2-IRES-tauGFP strain will be useful for physiological, molecular, cellular, and anatomical studies of this newly described chemosensory subsystem.
منابع مشابه
A Sensor for Low Environmental Oxygen in the Mouse Main Olfactory Epithelium
Sensing the level of oxygen in the external and internal environments is essential for survival. Organisms have evolved multiple mechanisms to sense oxygen. No function in oxygen sensing has been attributed to any mammalian olfactory system. Here, we demonstrate that low environmental oxygen directly activates a subpopulation of sensory neurons in the mouse main olfactory epithelium. These neur...
متن کاملOlfactory signal transduction in the mouse septal organ.
The septal organ, a distinct chemosensory organ observed in the mammalian nose, is essentially a small island of olfactory neuroepithelium located bilaterally at the ventral base of the nasal septum. Virtually nothing is known about its physiological properties and function. To understand the nature of the sensory neurons in this area, we studied the mechanisms underlying olfactory signal trans...
متن کاملAxonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F.
The olfactory system of the mouse includes several subsystems that project axons from the olfactory epithelium to the olfactory bulb. Among these is a subset of neurons that do not express the canonical pathway of olfactory signal transduction, but express guanylate cyclase-D (GC-D). These GC-D-positive (GC-D+) neurons are not known to express odorant receptors. Axons of GC-D+ neurons project t...
متن کاملReceptor guanylyl cyclases in mammalian olfaction: from genes to function
The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Genetargeted mice expressing reporters such as β-galactosidase and g...
متن کاملHierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq
The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving at sing...
متن کامل